Abstract

This study evaluated the influence of ceramic surface conditioning and storage regimen (baseline vs. aging) on the fatigue performance of simplified lithium disilicate glass-ceramic restorations. A total of 90 ceramic discs (Ø= 10 mm; thickness= 1.0 mm) were allocated into 6 groups (n= 15), considering 2 factors: “ceramic surface treatment” – CA (only silane-based coupling agent, Monobond N), HF (5% hydrofluoric acid etching), or HF+CA (5% HF acid etching plus silane-based coupling agent); and “storage regimen” – baseline (24 hours – 5 days of distilled water at 37 °C), or long-term aging (180 days of distilled water at 37 °C + 25,000 thermal cycles). After intaglio ceramic conditioning, adhesive bonding (Multilink N) was performed onto epoxy resin discs (Ø= 10 mm; thickness= 2.5 mm) and the bonded sets were subjected to step-stress fatigue tests (initial load: 200 N; step-size: 50 N; 10,000 cycles per step; 20 Hz). Fatigue data were analyzed using Kaplan-Meier and Weibull statistical analyses. Fractography and topography analyses were also conducted. The fatigue findings demonstrated that the performance among groups for both baseline and aging conditions maintained a tendency: the CA groups had the worst behavior (baseline: 893 N/143,667 cycles; aging: 639 N/84,179 cycles), while the surface etching with HF (baseline: 1247 N/214,333 cycles; aging: 816.67 N/128,333 cycles) and HF+CA groups (baseline: 1290 N/222,333 cycles; aging: 900 N/145,000 cycles) had no statistically significant difference between them. The aging protocol reduced the performance of all groups. The groups with better fatigue performance (HF and HF+CA) did not have statistical differences regarding structural reliability (Weibull modulus). Most failures were radial cracks from the cementation interface, except for CA aging specimens, with 27% failing from debonding. The HF etching led to noteworthy surface topographical alterations. Micromechanical interlocking resulting from HF acid etching remained prevalent in the fatigue behavior. Thus, the silane-based coupling agent (Monobond N) does not need to be applied after HF etching in terms of fatigue behavior outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call