Abstract

AimTo determine if there is a difference in serum zinc concentration between normoglycaemic, pre-diabetic and type-2 diabetic groups and if this is associated with pancreatic beta cell function and insulin sensitivity in the former 2 groups.MethodCross sectional study of a random sample of older community-dwelling men and women in Newcastle, New South Wales, Australia. Beta cell function, insulin sensitivity and insulin resistance were calculated for normoglycaemic and prediabetes participants using the Homeostasis Model Assessment (HOMA-2) calculator.ResultA total of 452 participants were recruited for this study. Approximately 33% (N = 149) had diabetes, 33% (N = 151) had prediabetes and 34% (N = 152) were normoglycaemic. Homeostasis Model Assessment (HOMA) parameters were found to be significantly different between normoglycaemic and prediabetes groups (p<0.001). In adjusted linear regression, higher serum zinc concentration was associated with increased insulin sensitivity (p = 0.01) in the prediabetic group. There was also a significant association between smoking and worse insulin sensitivity.ConclusionHigher serum zinc concentration is associated with increased insulin sensitivity. Longitudinal studies are required to determine if low serum zinc concentration plays a role in progression from pre-diabetes to diabetes.

Highlights

  • Diabetes, a disorder of metabolism with defects in either insulin secretion, insulin action or both, is increasing globally due to population growth, aging, urbanization, unhealthy eating habits, and increasing prevalence of obesity and physical inactivity [1]

  • Longitudinal studies are required to determine if low serum zinc concentration plays a role in progression from pre-diabetes to diabetes

  • Oxidative stress plays an important role in the pathogenesis of diabetes and its complications, and zinc is a structural component of key antioxidant enzymes such as superoxide dismutase, which is vital for intra- and extracellular antioxidant defence [10]

Read more

Summary

Introduction

A disorder of metabolism with defects in either insulin secretion, insulin action or both, is increasing globally due to population growth, aging, urbanization, unhealthy eating habits, and increasing prevalence of obesity and physical inactivity [1]. Type 2 diabetes is often asymptomatic and may remain undiagnosed for several years [3]. It is characterized by insulin resistance, hyperinsulinaemia, beta cell dysfunction and subsequent beta cell failure [4]. Zinc is essential in insulin action and carbohydrate metabolism [9]. Oxidative stress plays an important role in the pathogenesis of diabetes and its complications, and zinc is a structural component of key antioxidant enzymes such as superoxide dismutase, which is vital for intra- and extracellular antioxidant defence [10]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.