Abstract

Histatins are small histidine-rich salivary polypeptides which exhibit antimicrobial activity against Candida albicans. This antimicrobial activity has been ascribed in part to a high content of basic amino acids. However, unlike most other antimicrobial proteins histatins have a high content of histidine, tyrosine and acidic amino acids known to participate in metal ion coordination. This study was conducted to test whether histatin 5 could bind zinc and copper which are metals present in salivary secretions and whole saliva. Physical binding parameters and spectral properties of zinc- and copper-histatin complexes were investigated in order to obtain direct evidence of these interactions. A spectrophotometric competition assay using the metallochromic indicator murexide showed that histatin 5 dissociates metal indicator complexes containing zinc or copper ions. Absorption spectra of histatin 5 at increasing copper chloride concentrations resulted in higher absorbance in the 230–280 nm wavelength range and this spectral change was saturated at a peptide:metal molar ratio of approx. 1:1. A corresponding band was observed in the visible range of the spectrum with a maximum and molar extinction coefficient corresponding to that of copper binding to an ATCUN motif. Quantitative assessment of zinc and copper binding to histatin 5 using isothermal titration calorimetry revealed at least one high affinity site for each metal, with binding constants of 1.2×105 and 2.6×107 M−1, respectively. These results indicate that histatin 5 exhibits metallopeptide-like properties. The precise biological significance of this has not yet been established but histatins may contribute significantly to salivary metal binding capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call