Abstract
New Findings What is the central question of this study? Rate–pressure product (RPP) is commonly used as an index of cardiac ‘effort’. In canine and human hearts (which have a positive force–frequency relationship), RPP is linearly correlated with oxygen consumption and has therefore been widely adopted as a species‐independent index of cardiac work. However, given that isolated rodent hearts demonstrate a negative force–frequency relationship, its use in this model requires validation. What is the main finding and its importance? Despite its widespread use, RPP is not correlated with oxygen consumption (or cardiac ‘effort’) in the Langendorff‐perfused isolated rat heart. This lack of correlation was also evident when perfusions included a range of metabolic substrates, insulin or β‐adrenoceptor stimulation. Langendorff perfusion of hearts isolated from rats and mice has been used extensively for physiological, pharmacological and biochemical studies. The ability to phenotype these hearts reliably is, therefore, essential. One of the commonly used indices of function is rate–pressure product (RPP); a rather ill‐defined index of ‘work’ or, more correctly, ‘effort’. Rate–pressure product, as originally described in dog or human hearts, was shown to be correlated with myocardial oxygen consumption (MV˙O2). Despite its widespread use, the application of this index to rat or mouse hearts (which, unlike the dog or human, have a negative force–frequency relationship) has not been characterized. The aim of this study was to examine the relationship between RPP and MV˙O2 in Langendorff‐perfused rat hearts. Paced hearts (300–750 beats min−1) were perfused either with Krebs–Henseleit (KH) buffer (11 mm glucose) or with buffer supplemented with metabolic substrates and insulin. The arteriovenous oxygen consumption (MV˙O2) was recorded. Metabolic status was assessed using 31P magnetic resonance spectroscopy and lactate efflux. Experiments were repeated in the presence of isoprenaline and in unpaced hearts where heart rate was increased by cumulative isoprenaline challenge. In KH buffer‐perfused hearts, MV˙O2 increased with increasing heart rate, but given that left ventricular developed pressure decreased with increases in rate, RPP was not correlated with MV˙O2, lactate production or phosphocreatine/ATP ratio. Although the provision of substrates or β‐adrenoceptor stimulation changed the shape of the RPP–MV˙O2 relationship, neither intervention resulted in a positive correlation between RPP and oxygen consumption. Rate–pressure product is therefore an unreliable index of oxygen consumption or ‘cardiac effort’ in the isolated rat heart.
Highlights
Langendorff perfusion of hearts isolated from rats and mice has been used extensively for physiological, pharmacological, biochemical and molecular studies for many years
rate–pressure product (RPP) may increase with heart rate and be correlated with myocardial O2 consumption (MV O2) in the human heart, what happens in the isolated rat or mouse heart has never been defined
This study demonstrates that, despite its widespread use, RPP is an unreliable index of MV O2 or cardiac ‘effort’
Summary
Langendorff perfusion of hearts isolated from rats and mice has been used extensively for physiological, pharmacological, biochemical and molecular studies for many years. Rate–pressure product was originally described by Katz & Feinberg (1958) as an index of ‘cardiac effort’ in dog hearts and shown to be linearly correlated with oxygen consumption. This correlation with oxygen consumption was confirmed in human hearts by Kitamura et al (1972). RPP may increase with heart rate and be correlated with myocardial O2 consumption (MV O2) in the human heart, what happens in the isolated rat or mouse heart has never been defined
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.