Abstract
The present experiment determined whether object texture influenced the transport and grasp components of human prehension. Infrared markers placed on the index finger, thumb, and wrist were recorded using a WATSMART system. The test objects were cylindrical dowels (103 mm high, 25 mm diameter, and 150 g in weight) of various surface materials (plain metal, coated with Vaseline, and covered with coarse sandpaper). Only temporal kinematic measures were affected by texture: Movement time (ms), time after peak deceleration (ms), percentages of movement time following maximum aperture, velocity, and deceleration were all significantly greater for the slippery dowel than the normal and rough dowels. Results indicated that the increased time associated with the slippery dowel could be explained entirely by increased time between contact with the dowel and dowel lift. Thus, these results are like those of Weir, MacKenzie, Marteniuk, Cargoe, and Frazer (1991), in which object weight was shown not to affect the free-motion phase, which includes the transport and grasp components of prehension. It appears that intrinsic object properties like weight and texture affect only the finger-object interaction phase of prehension; subsequent research is needed to dissociate inertial and surface friction effects while in contact with objects
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have