Abstract

Natural inflation is a well-motivated model for the early universe in which an inflaton potential of the pseudo-Nambu-Goldstone form, V(ϕ) = Λ4[1 + cos(ϕ/f)], can naturally drive a cosmic accelerated epoch. This paper investigates the observational viability of the minimally and non-minimally coupled natural inflation scenarios in light of current Cosmic Microwave Background (CMB) observations. We find that a small and negative coupling of the field with gravity can alleviate the well-known observational discrepancies of the minimally coupled model. We perform a Monte Carlo Markov Chain analysis of the Planck 2018 CMB and BICEP/Keck Array B-mode polarization data to estimate how strong the coupling ξ should be to achieve concordance with data. We also briefly discuss the impact of these results on the physical interpretation of the natural inflation scenario.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.