Abstract

Abstract Fast radio bursts (FRBs) are a mysterious astrophysical phenomenon of bright pulses emitted at radio frequencies, and they are expected to be frequently detected in the future. The dispersion measures of FRBs are related to cosmological parameters, thus FRBs have the potential to be developed into a new cosmological probe if their data can be largely accumulated in the future. In this work, we study the capability of future FRB data to improve cosmological parameter estimation in two dynamical dark energy models. We find that the simulated FRB data can break the parameter degeneracies inherent in the current cosmic microwave background (CMB) data. Therefore, the combination of CMB and FRB data can significantly improve the constraints on the Hubble constant and dark energy parameters, compared to those using CMB or FRB alone. If 10,000 FRB events with known redshifts are detected in the future, they would perform better than the baryon acoustic oscillation (BAO) data in breaking the parameter degeneracies inherent in the CMB data. We also find that the combination of FRB and gravitational-wave (GW) standard siren data provides an independent low-redshift probe to verify the results from the CMB and BAO data. For the data combination of CMB, GW, and FRB, it is found that the main contribution to the constraints comes from the CMB and GW data, but the inclusion of the FRB data still can evidently improve the constraint on the baryon density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.