Abstract

In an attempt to seek out whether the reorientation time of a solute molecule is influenced by marginal changes to its shape, rotational relaxation of four coumarin solutes that are almost identical in size but subtly distinct in shape has been investigated in a viscous nonpolar solvent as a function of temperature. It has been observed that the reorientation times of the four coumarins differ significantly from one another. The four solutes have been treated as asymmetric ellipsoids and Stokes-Einstein-Debye hydrodynamic theory has been employed to calculate the shape factors and boundary condition parameters. The measured reorientation times when normalized by respective shape factors and boundary condition parameters can be scaled on a common curve, which is an indication that ellipsoid based hydrodynamic theory is adequate to model the reorientation times even when the differences in the shapes of the solute molecules are minimal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.