Abstract

The main challenge in treating malignant brain neoplasms lies in eradicating the tumor while minimizing treatment-related damage. Conventional radiation treatments are associated with considerable side effects. Synchrotron generated micro-beam radiation (SMBRT) has shown to preserve brain architecture while killing tumor cells, however physical characteristics and limited facility access restrict its use. We have created a new clinical device which produces mini beams on a linear accelerator, to provide a new type of treatment called mini-beam radiation therapy (MBRT). The objective of this study is to compare the treatment outcomes of linear accelerator based MBRT versus standard radiation treatment (SRT), to evaluate the tumor response and the treatment-related changes in the normal brain with respect to each treatment type. Pet dogs with de-novo brain tumors were accrued for treatment. Dogs were randomized between standard fractionated stereotactic (9 Gy in 3 fractions) radiation treatment vs. a single fraction of MBRT (26 Gy mean dose). Dogs were monitored after treatment for clinical assessment and imaging. When the dogs were euthanized, a veterinary pathologist assessed the radiation changes and tumor response. We accrued 16 dogs, 8 dogs in each treatment arm. In the MBRT arm, 71% dogs achieved complete pathological remission. The radiation-related changes were all confined to the target region. Structural damage was not observed in the beam path outside of the target region. In contrast, none of the dogs in control group achieved remission and the treatment related damage was more extensive. Therapeutic superiority was observed with MBRT, including both tumor control and the normal structural preservation. The MBRT findings are suggestive of an immune related mechanism which is absent in standard treatment. These findings together with the widespread availability of clinical linear accelerators make MBRT a promising research topic to explore further treatment and clinical trial opportunities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call