Abstract

Although fluorescent lamps (FL) are extensively used worldwide, recycling rates in some countries are still low. If disposed of inappropriately and broken, FL can cause soil contamination. Hg toxicity in FL is extensively discussed in the literature; however, few studies address the other toxic metals present in the phosphorous powder of FL (PPFL). This paper presents a characterization of the environmental mobility with sequential extraction scheme (SES) of Cd, Cu, Hg, Mn, Ni, Pb, and Zn in PPFL, and modeling the potential risks to human health, in case of direct disposal in soils. An after thermal treatment waste was used for safety reasons. The SES method included five fractions, and the quantification was performed by flame atomic absorption spectrometry (FAAS). Human health risk assessment (HHRA) was conducted using RISC4® software. The PPFL showed the following mobility sequence: Cu (85%) > Ni (81%) > Hg (80%) > Zn (77%) > Cd (75%) > Mn (6%) > Pb (2%), which suggests that Cu, Ni, Zn, and Cd, besides Hg, could be of environmental concern in terms of availability. HHRA showed the potential hazard of Cd, for both children and adults, in the hypothetical scenario of vegetable ingestion, considering vegetables grown in soils contaminated with FL waste. The thermal treatment does not completely remove Hg from the matrix, and the residual Hg still poses a risk to children. These results show that Hg and Cd can be hazardous to humans and reinforce the importance of the correct disposal and treatment of PPFL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call