Abstract

If a beam of unpolarized positrons (which is considered as a sum of two fractions with opposite helicities) passes through an intense circular polarized laser radiation these fractions may be separated. For high laser flash intensity each positron will interact with $k_0\gg$1 laser photons subsequently (linear multiple compton scattering process). Due to difference in the compton cross-section for positrons polarized in opposite directions the mean final energy of each fraction will be different. It allows to get a polarized positron beam using the momentum selection (with some intensity loss). Estimations show the possibility to obtain a positron beam with 35% longitudinal polarization and 25% intensity from the initial one for focussed laser flash with total energy 5J and positron beam with energy 5 GeV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.