Abstract

AbstractWhen artificial intelligence (AI) is used to make high-stakes decisions, some worry that this will create a morally troubling responsibility gap—that is, a situation in which nobody is morally responsible for the actions and outcomes that result. Since the responsibility gap might be thought to result from individuals lacking knowledge of the future behavior of AI systems, it can be and has been suggested that deploying explainable artificial intelligence (XAI) techniques will help us to avoid it. These techniques provide humans with certain forms of understanding of the systems in question. In this paper, I consider whether existing XAI techniques can indeed close the responsibility gap. I identify a number of significant limits to their ability to do so. Ensuring that responsibility for AI-assisted outcomes is maintained may require using different techniques in different circumstances, and potentially also developing new techniques that can avoid each of the issues identified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.