Abstract
Rejection of single salts or ions is a basic and crucial characteristic of nanofiltration (NF) membranes. The simple and most pursued method to quantify the salt concentration has been via conductivity measurement. Pitfalls exist when ions hydrolysis or feed water contains monovalent ions. This could be explained in two possible scenarios: (1) easily hydrolyzed single salts form low charged ions and reduce feed pH, resulting in increased permeate conductivity and low nominal rejection; (2) for membranes with high multivalent ion rejections (>99%) or the concentration of target ions in feed is low, conductivity measurement results in low rejection due to the passage of monovalent ions if deionized water is used for the feed solution. A correction formula by subtracting the concentration of monovalent ions in water to obtain an accurate rejection value is proposed. This work provides an accurate, simple and robust evaluation of rejection for NF membranes, which promotes fair comparison of performance in literature, reliable analysis of separation mechanisms as well as a precise determination of product purity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.