Abstract
The disease, cystic fibrosis, is caused by the malfunction of the cystic fibrosis transmembrane conductance regulator. Expression of functional CFTR may normally regulate extracellular pH via control of bicarbonate efflux. Reports also suggest that the CFTR may be a Cl-/HCO3- exchanger. If true, this could be very important for treatment of CF given the airway host defense system is quite sensitive to pH, and acidic pH been found to increase mucus viscosity. We compared evidentiary support of four possible models of CFTR's role in the transport of bicarbonate: 1) CFTR as a Cl-channel that permits bicarbonate conductance, 2) CFTR as an anion Cl-/HCO3- exchanger (AE), 3.) CFTR as both a Cl-channel and an AE, and 4.) CFTR as a Cl-channel that allows for transport of bicarbonate and regulates an independent AE. The effect of stimulators and inhibitors of CFTR and AEs were evaluated via iodide efflux and studies of extracellular pH. This data, as well as that published by others, suggest that while CFTR may support and regulate bicarbonate flux it is unlikely it directly performs Cl-/HCO3- anion exchange.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.