Abstract
PurposeThe aim is to assess the impact of different imaging-protocols on image-based kidney dosimetry in 177Lu labelled peptide receptor radiotherapies. MethodsKidney data of five [177Lu]Lu-OPS201 injected pigs and a 3D printed phantom were used for comparing the absorbed doses and time-integrated activity coefficients calculated based on the following imaging-protocols: A-) multiple time-point SPECT/CTs, B-) multiple time-point planar scans in combination with one SPECT/CT, C-) single time-point SPECT/CT. In addition, the influence of late scan time-points on kidney dosimetry was investigated by sequentially eliminating scan data at > 100 h from the pig/phantom datasets for imaging-protocols A and B. ResultsCompared to imaging-protocol A, absorbed doses based on imaging-protocols B and C (scans at > 24 h post-injection) were always lower (differences > 34%). The best agreement in absorbed dose was achieved by imaging-protocol C at ∼ 100 h post-injection (difference: 4%). Regarding the phantom/pig experiments, eliminating scan data at > 100 h post-injection increased the time-integrated activity coefficients calculated based on imaging-protocols A and B by up to 83%. ConclusionWhile imaging-protocol A is accurate if scans at >∼100 h are included, it is time-consuming. In addition to being time-consuming, imaging-protocol B shows high differences associated with organ-count overlay, a lack of accuracy concerning the geometric mean based 2D attenuation correction, and 2D background subtraction due to the inhomogeneous and time-varying background contributions. Our findings indicate that dosimetry based on imaging-protocol C, if appropriately performed, provides similar kidney absorbed doses compared to imaging-protocol A, while only a single scan time-point is necessary.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have