Abstract

L-NG-Methylarginine (NMA) is an established mechanism-based inactivator of murine macrophage nitric oxide synthase (mNOS). In this report, NMA is shown to irreversibly inhibit both mNOS (k(inact) = 0.08 min-1) and the recombinant constitutive brain NOS (bNOS). For both NOS isoforms, metabolism of NMA parallels that of the natural substrate L-arginine (ARG), in that it undergoes a regiospecific, NADPH-dependent hydroxylation to form L-NG-hydroxy-NG-methylarginine (NOHNMA). This intermediate then undergoes further NADPH-dependent oxidation to form L-citrulline (CIT). Authentic NOHNMA, synthesized from L-ornithine, irreversibly inhibited both mNOS (k(inact) = 0.10 min-1) and bNOS in an NADPH-dependent reaction. The conversion of either NMA or NOHNMA to CIT correlated with irreversible enzyme inactivation. Thus, the data suggest that enzyme inhibition occurs as a consequence of oxidative metabolism of the intermediate, NOHNMA. A unified mechanism is proposed that accounts for NO biosynthesis from ARG, for the inactivation of NOS by NMA and for the intermediacy of hydroxylated ARG or NMA derivatives in these processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.