Abstract

During primer elongation by Escherichia coli DNA-polymerase I large fragments on the template were irradiated with UV laser pulses at an intensity ⩾ 10 10 W m 2 . In addition to the termination events at photoproducts typical of low-intensity UV irradiation, termination is observed before deoxyguanosine residues. The effect of the UV light intensity on the ratio of termination efficiencies before dPy and dG suggests that the termination of polymerization before deoxyguanosine residues results from the formation of photoproducts yielded by two-quantum reactions. The results obtained herein, together with data published previously, imply that photomodification of dG residues is the major two-quantum reaction under the action of high-intensity UV radiation on DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.