Abstract

With a wide variety of applications in numerous industries, ranging from biomedical to nuclear, ceramics such as ceria are key engineering materials. It is possible to significantly alter the materials functionality and therefore its applications by reducing the grain size to the nanometer size regime, at which point the unique varieties of grain boundaries and associated interfaces begin to dominate the material properties. Nanocrystalline films of cubic ceria deposited onto Si substrates have been irradiated with 3MeV Au+ ions at temperatures of 300 and 400K to evaluate their response to irradiation. It was observed that the films remained phase stable. Following a slight stress relief stage at low damage levels, the overall lattice is extremely stable up to high irradiation dose of ∼34 displacements per atom. The grains were also observed to undergo a temperature-dependent grain growth process upon ion irradiation. This is attributed to a defect-driven mechanism in which the diffusion of defects from the collision cascade is critical. Formation of dislocations that terminate and stabilize at symmetric grain boundaries may be the limiting factor in the grain growth and overall energy reduction of the system. Utilizing ion modification, possible improvement of the adhesion of thin films and reduction of the probability of detrimental effects of stress-induced problems are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.