Abstract
We study the interaction between elliptically polarized light and a three-dimensional Luttinger semimetal with quadratic band touching using Floquet theory. In the absence of light, the touching bands can have the same or the opposite signs of the curvature; in each case, we show that simply tuning the light parameters allows us to create a zoo of Weyl semimetallic phases. In particular, we find that double and single Weyl points can coexist at different energies, and they can be tuned to be type I or type II. We also find an unusual phase transition, in which a pair of Weyl nodes form at finite momentum and disappear off to infinity. Considering the broad tunability of light and abundance of materials described by the Luttinger Hamiltonian, such as certain pyrochlore iridates, half-Heuslers and zinc-blende semiconductors, we believe this work can lay the foundation for creating Weyl semimetals in the lab and dynamically tuning between them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.