Abstract

NADH-quinone 1 Bovine heart Complex I contains only ubiquinone-10. Quinones in bacterial membranes differ depending on strains, for example, ubiquinone-10 in R. capsulatus; ubiquinone-8 in P. denitrificans; menaquinone-8 in T. thermophilus; both ubiquinone-8 and menaquinone-8 in aerobically grown E. coli cells (the ratio of UQ and MQ is controlled by oxygen tension). Therefore, in this mini-review, quinone (Q), quinol (QH 2), and semiquinone (SQ) were used for simplicity. 1 oxidoreductase (Complex I) isolated from bovine heart mitochondria was, until recently, the major source for the study of this most complicated energy transducing device in the mitochondrial respiratory chain. Complex I has been shown to contain 43 subunits and possesses a molecular mass of about 1 million. Recently, Complex I genes have been cloned and sequenced from several bacterial sources including Escherichia coli, Paracoccus denitrificans, Rhodobacter capsulatus and Thermus thermophilus HB-8. These enzymes are less complicated than the bovine enzyme, containing a core of 13 or 14 subunits homologous to the bovine heart Complex I. From this data, important clues concerning the subunit location of both the substrate binding site and intrinsic redox centers have been gleaned. Powerful molecular genetic approaches used in these bacterial systems can identify structure/function relationships concerning the redox components of Complex I. Site-directed mutants at the level of bacterial chromosomes and over-expression and purification of single subunits have allowed detailed analysis of the amino acid residues involved in ligand binding to several iron–sulfur clusters. Therefore, it has become possible to examine which subunits contain individual iron–sulfur clusters, their location within the enzyme and what their ligand residues are. The discovery of g=2.00 EPR signals arising from two distinct species of semiquinone (SQ) in the activated bovine heart submitochondrial particles (SMP) is another line of recent progress. The intensity of semiquinone signals is sensitive to Δ μ H + and is diminished by specific inhibitors of Complex I. To date, semiquinones similar to those reported for the bovine heart mitochondrial Complex I have not yet been discovered in the bacterial systems. This mini-review describes three aspects of the recent progress in the study of the redox components of Complex I: (A) the location of the substrate (NADH) binding site, flavin, and most of the iron–sulfur clusters, which have been identified in the hydrophilic electron entry domain of Complex I; (B) experimental evidence indicating that the cluster N2 is located in the amphipathic domain of Complex I, connecting the promontory and membrane parts. Very recent data is also presented suggesting that the cluster N2 may have a unique ligand structure with an atypical cluster-ligation sequence motif located in the NuoB (NQO6/PSST) subunit rather than in the long advocated NuoI (NQO9/TYKY) subunit. The latter subunit contains the most primordial sequence motif for two tetranuclear clusters; (C) the discovery of spin–spin interactions between cluster N2 and two distinct Complex I-associated species of semiquinone. Based on the splitting of the g  signal of the cluster N2 and concomitant strong enhancement of the semiquinone spin relaxation, one semiquinone species was localized 8–11 Å from the cluster N2 within the inner membrane on the matrix side (N-side). Spin relaxation of the other semiquinone species is much less enhanced, and thus it was proposed to have a longer distance from the cluster N2, perhaps located closer to the other side (P-side) surface of the membrane. A brief introduction of EPR technique was also described in Appendix Aof this mini-review.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call