Abstract

A nonenzymatic iron(III) diethylenetriaminepentaacetic acid (Fe(III)-DETPA) complex based amperometric sensor for the analytical determination of hydrogen peroxide was developed. By combining the electrostatic interaction between the Fe(III)-DETPA complex and polyallylamine (PAH) functionalized multiwalled carbon nanotubes (MWCNTs) as well as the ionotropic crosslinking interaction between PAH and ethylenediamine-tetramethylene phosphonic acid (EDTMP), the electroactive Fe(III)-DETPA complex was successfully incorporated within the MWCNT matrix, and firmly immobilized on the Au substrate electrode. The fabricated electrochemical sensor was characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical methods. The influences of solution pH and ionic strength on the electrochemical sensor were investigated. The prepared electrochemical sensor had a fast response to hydrogen peroxide (<3 s) and an excellent linear range of concentration from 1.25 × 10(-8) to 4.75 × 10(-3) M with a detection limit of 6.3 × 10(-9) M under the optimum conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call