Abstract

The trace element iron plays important roles in biological systems. Vital functions of both host organisms and pathogens require iron. During infection, the innate immune system reduces iron availability for invading organisms. Pathogens acquire iron through different mechanisms, primarily through the secretion of high-affinity iron chelating compounds known as siderophores. Bacterial siderophores have been used clinically for iron chelation, however synthetic iron chelators are superior for treating infection because - in contrast to siderophore-bound iron - bacteria are not able to utilize iron bound to those molecules. Additionally, utilizing siderophores-dependent iron uptake in a "trojan horse" manner represents a potential option to carry antibiotics into bacterial cells. Recently, synthetic iron chelators have been shown to enhance antibiotic effectiveness and overcome antibiotic resistance. This has implications for the treatment of infections through combination therapy of iron chelators and antibiotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.