Abstract

The cluster [Fe(5)RhN(CO)(15)](2)(-) was synthesized in 40% yield from [Fe(4)N(CO)(12)](-) and [Rh(CO)(4)](-) in refluxing tetrahydrofuran, whereas the analogous anion [Fe(5)IrN(CO)(15)](2)(-) was prepared in CH(3)CN at room temperature from [Fe(6)N(CO)(15)](3)(-) and [Ir(C(8)H(14))(2)Cl](2); the yields are higher than 60%. The monoanion [Fe(4)Rh(2)N(CO)(15)](-) was obtained in 70% yield from [Fe(5)RhN(CO)(15)](2)(-) and hydrated RhCl(3). The solid-state structures of the three anions were determined on their [PPh(4)](+) salts: the six metal atoms are arranged in octahedral cages and are coordinated to 3 edge-bridging and 12 terminal carbonyl ligands and to a &mgr;(6)-N ligand. The Rh and Ir atoms have less terminal COs than Fe, in order to equalize the excess electrons at the d(9) metal centers. The two rhodium atoms in [Fe(4)Rh(2)N(CO)(15)](-) are directly bound. The (15)N NMR spectra of the three compounds have been recorded; the signals of the nitride ligands were found at delta = 514 ppm for the dianions and 470 ppm for [Fe(4)Rh(2)N(CO)(15)](-); any group 9 atom shifts the resonance of nitrogen to higher fields. The coupling constants J((15)N-(103)Rh) are 8-9 Hz. The vibrational patterns of the metal cores have been interpreted on the basis of an idealized M(6) octahedral arrangement, subsequently modified by the perturbations given by different atomic masses and M-M stretching force constants. The motions of the nitrogen are related to the idealized symmetry of the cage; the M-N force constant values depend on the type of metal and on the charge of the anion. The dianions [Fe(5)MN(CO)(15)](2)(-) can be electrochemically oxidized at -20 degrees C to their short-lived monoanions, which can be characterized by EPR spectroscopy. In contrast, the cluster [Fe(4)Rh(2)N(CO)(15)](-) undergoes a single-step 2-electron reduction to the partially stable trianion [Fe(4)Rh(2)N(CO)(15)](3)(-), which was also characterized by EPR spectroscopy. The Fe-Rh nitride clusters are active catalysts for the hydroformylation of 1-pentene, but display low selectivity (35-65%) in n-hexanal and are demolished under catalytic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.