Abstract

Treatment of Chinese hamster lung fibroblasts (CCl 39 cells) with the impermeable iron(II) chelator bathophenanthroline disulfonate (BPS) inhibits DNA synthesis when cell growth is initiated with growth factors including epidermal growth factor plus insulin, thrombin, or ceruloplasmin, but not with 10% fetal calf serum. The BPS treatment inhibits transplasma membrane electron transport. The treatment leads to release of iron from the cells as determined by BPS iron(II) complex formation over 90 min. Growth factor stimulation of DNA synthesis and electron transport are restored by addition of di- or trivalent iron to the cells in the form of ferric ammonium citrate, ferrous ammonium sulfate, or diferric transferrin. The effect with BPS differs from the inhibition of growth by hydroxyurea, which acts on the ribonucleotide reductase, or diethylenetriaminepentaacetic acid, which is another impermeable chelating agent, in that these agents inhibit growth in 10% fetal calf serum. The BPS effect is consistent with removal of iron from a site on the cell surface that controls DNA synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call