Abstract

The synthesis of DNA in CCl 39 cells is inhibited by the presence of the Fe2+ chelator bathophenanthroline disulfonate (BPS) when growth is stimulated by thrombin EGF plus insulin, but not by fetal calf serum. The presence of transferrin and Fe3+ in fetal calf serum can be the basis for lack of BPS effect with serum. The impermeable Fe3+ chelator Tiron does not, by itself, inhibit growth factor induced DNA synthesis, but it induces together with BPS inhibition on fetal calf serum induced DNA synthesis. The combined effect of BPS and Tiron is similar to inhibition of DNA synthesis by impermeable polyvalent DTPA which can chelate both Fe2+ and Fe3+ but does not inhibit ribonucleotide reductase in intact cells. Ferrous iron that bind BPS can relieve the inhibition at stoichiometric concentration. Ferric iron also prevents the inhibition even though it does not bind BPS. BPS does not inhibit DNA synthesis in HeLa cells. BPS reacts with iron from CCl 39 cells but not from HeLa cells. Data show that iron available for impermeable external chelators is in the ferrous state, and that exogenous iron should be reduced before it reverses the inhibition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.