Abstract

An iron-retrofitted anaerobic baffled reactor (ABR) system was developed for the effective treatment of rural wastewater with reduced maintenance demand and aeration costs. Average removal efficiencies of chemical oxygen demand, total nitrogen and total phosphorus of 99.4%, 62.7% and 92.6% were achieved respectively, when the ABR system was operating at steady state. With effective bioreduction of FeIII in the anaerobic chambers, phosphorus was immobilized in the sludge as vivianite, the sole phosphorus-carrying mineral. The FeIII in the recirculated sludge induced Feammox in the ABR reactor, contributing 14.8% to total nitrogen removal. Biophase separation and enrichment of microorganisms associated with iron and nitrogen transformations were observed in the system after Fe dosing, which enhanced the removal of pollutants. The coupling of Feammox and vivianite crystallization to remove nitrogen and phosphorus in an iron-retrofitted ABR would appear to be a promising technology for rural wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.