Abstract

Temperature dependent iron precipitation in float zone grown silicon wafers has been experimentally investigated. Results of iron precipitation experiments over a wide thermal process temperature range and time are presented. Precipitation of iron in silicon was analyzed by a quantitative assessment of change in interstitial iron using a surface photovoltage minority carrier lifetime analysis technique. Contamination levels of iron in the range 1011–1013 atoms/cm3 are investigated. It is concluded that maximum iron precipitation occurs in the temperature range of 500–600 °C. Iron precipitation is rapid in this region where more than 90% of the interstitial iron precipitates in a period of 30 min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.