Abstract
In order to better understand and model internal gettering of iron in silicon, a quantitative investigation of iron precipitation in silicon containing different oxygen precipitate densities was performed. The number of iron precipitation sites was obtained from the iron precipitation kinetics using Ham's law. At low temperatures, the iron precipitation site density corresponded to the oxygen precipitate density. A strong annealing temperature dependence of the iron precipitate density was observed for the samples with larger oxygen precipitate densities. These data were used to simulate iron precipitation during a slow cool. From those simulations, optimal cooling rates were obtained for different silicon materials assuming various iron precipitation site densities in the denuded zone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.