Abstract

We investigated the high intensity plasma generated by using a Nd:YAG laser to apply a laser-produced plasma to the direct plasma injection scheme. The capability of the source to generate high charge state ions strongly depends on the power density of the laser irradiation. Therefore, we focused on using a higher power laser with several hundred picoseconds of pulse width. The iron target was irradiated with the pulsed laser, and the ion current of the laser-produced iron plasma was measured using a Faraday cup and the charge state distribution was investigated using an electrostatic ion analyzer. We found that higher charge state iron ions (up to Fe(21+)) were obtained using a laser pulse of several hundred picoseconds in comparison to those obtained using a laser pulse of several nanoseconds (up to Fe(19+)). We also found that when the laser irradiation area was relatively large, the laser power was absorbed mainly by the contamination on the target surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call