Abstract

Iron-catalyzed alkyl–aryl Kumada coupling has developed into an efficient synthetic method, yet its mechanism remains vague. Here, we apply a bis(oxazolinylphenyl)amido pincer ligand (Bopa) to stabilize the catalytically active Fe center, resulting in isolation and characterization of well-defined iron complexes whose catalytic roles have been probed and confirmed. Reactivity studies of the iron complexes identify an Fe(II) “ate” complex, [Fe(Bopa-Ph)(Ph)2]−, as the active species for the oxidative addition of alkyl halide. Experiments using radical-probe substrates and DFT computations reveal a bimetallic and radical mechanism for the oxidative addition. The kinetics of the coupling of an alkyl iodide with PhMgCl suggests that formation of the “ate” complex, rather than oxidative addition, is the turnover-determining step. This work provides insights into iron-catalyzed cross-coupling reactions of alkyl halides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.