Abstract
Pathogenic bacteria infections have posed a threat to human health worldwide. Nanomaterials with natural enzymatic activity provide an opportunity for the development of new antibacterial pathways. We successfully constructed iron phosphate nanozyme-hydrogel (FePO4-HG) with the traits of positive charge and macropores. Interestingly, FePO4-HG displayed not only peroxidase-like activity under acidic bacterial infectious microenvironment but also superoxide dismutase-catalase-like synergistic effects in neutral or weak alkaline conditions, thus protecting normal tissues from the peroxidase-like protocol with exogenous H2O2 damage. Furthermore, the positive charge and macropore structure of FePO4-HG could capture and restrict bacteria in the range of ROS destruction. Obviously, FePO4-HG exhibited excellent antibacterial ability against MRSA and AREC with the assistance of H2O2. Significantly, the FePO4-HG + H2O2 system could efficiently disrupt the bacterial biofilm formation and facilitate the glutathione oxidation process to rapid bacterial death with low cytotoxicity. Moreover, FePO4-HG was unsusceptible to bacterial resistance development in MRSA. Animal experiments showed that the FePO4-HG + H2O2 group could efficiently eliminate the MRSA infection and present excellent wound healing without inflammation and tissue adhesions. With further development and optimization, FePO4-HG has great potential as a new class of antibacterial agents to fight antibiotic-resistant pathogens.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have