Abstract

The initial Fe(III) minerals and the secondary mineralization products of Shewanella putrefaciens CN32 grown in the presence of dissolved phosphate and a commercial Fe(III) oxide, nominally nanoparticulate lepidocrocite, were determined using XRD and XAFS. The starting material was transformed by the bacteria from a reddish brown, rust colour mineral to a dark green phase over 90 days. Acid extraction of the bioreduced solids with 0.75 M HCl recovered 83% of the total iron as Fe(II), leaving a solid, acid-resistant phase. The latter was identified as nanoparticulate hematite by EXAFS. Subsequently, the starting Fe(III) phase was determined to be a mixture of 60% lepidocrocite, 26% ferrihydrite, and 14% hematite, using linear combination EXAFS analysis. For the acid-extractable phase, XANES and EXAFS indicated a predominantly Fe(II) valence state and a spectrum consistent with a mixture of brucite-type minerals(e.g., green rust or ferrous hydroxide) and siderite. The observed transformations suggest that in this mixed-mineral system, lepidocrocite and ferrihydrite are readily reducible to green rust and siderite, whereas hematite is less amenable to bacterial reduction. This study also demonstrates the utility of XAFS spectroscopy in the quantitative characterization of dissimilatory metal transformations, particularly in complex systems such as nanoparticulate minerals in hydrated mineral-bacteria assemblages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.