Abstract

Supporting materials are often employed to enhance the stability of iron oxides oxygen carriers, but the reactivity is compromised for the dilution of the active phase. Here, we report several iron oxides supported by ionic conducting gadolinium-doped cerium oxides (GDC) for efficient chemical looping hydrogen production. The results show that GDC support can simultaneously improve redox stability and activity. Specifically, the produced Fe2O3/Gd0.3Ce0.7O3−δ exhibits a high hydrogen production rate of ~0.71 mmol·g−1·min−1 and hydrogen yield of ~10 mmol·g−1 with negligible decay through 20 redox cycle. When using methane as the reducing agent, Fe2O3/Gd0.3Ce0.7O3−δ shows high methane conversion of 75.67% and much lower carbon deposition than Fe2O3. The high performance is attributed to the improved oxide ion-conductivity through the oxygen carrier, which is further verified as the ability of the GDC support to accelerate the oxygen diffusion in the bulk. The explored support effects in this work can be extended to design oxygen carrier materials with both high activity and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.