Abstract

This study is the first to evaluate the effects of Iron oxides (FeOx) species and their decoration on graphene oxide/chitosan (GO/CS) composites for Cr(VI) removal and the possibility of Fe secondary pollution. Results show that Fe(III) is a better decoration material than Fe(II) and decoration through immersion-evaporation shows a higher adsorption capacity of Cr(VI) (Qe) than co-precipitation. Fe2O3-GO/CS as the only eco-friendly composite for enhanced Cr(VI) removal is further used for batch adsorption experiments, characterization, kinetics, isotherms, and thermodynamic studies. It is found that Cr(VI) removal mainly includes electrostatic attraction between Cr(VI) oxyanions and surface -NH3+ and -OH2+, and the adsorbed Cr(VI) partially reduces to Cr(III). Qe increases with the increasing initial Cr(VI) concentration, contact time, and temperature, while decreases with the increasing pH and mass and volume ratio (m/v). The coexisting ions (Cl−, NO3−, SO42−, PO43−, As, Fe, and Pb) can cause an obvious decrease of Qe. The removal efficiency (Re) and Qe are 94.3% and 83.8 mg/g, respectively under the optimal conditions. After five times of regeneration, Re is still as high as 84% and Qe drops about 2.6%. Cr(VI) adsorption is spontaneous and endothermic, which is best fitted with the Sips model, and the fitted maximum Qe is 131.33 mg/g.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.