Abstract
A simple, cheap, and environmentally friendly bio-conducting interpenetrated polymer blend network was prepared and introduced as a highly efficient system with suitable physical and mechanical properties for industrial removal of toxic Cr(VI) ions from aqueous solution. Carboxymethyl cellulose/polyaniline (CMC/PANI) interpenetrated network (IPN) blend was prepared by simple simultaneous ion-cross-linking of CMC and PANI chains using Al3+ cations. The CMC/PANI bio-conducting nanocomposite was characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy equipped with an "energy dispersive X-ray spectroscopy" (SEM–EDX) technique. The CMC/PANI blend, ion-cross-linked by Al3+ cations, showed good stability and high surface area, proper for the removal of toxic Cr(VI) ions of the aqueous solution. Batch removal experiments were accomplished and the impression of effective variables including solution pH, initial concentration of Cr(VI) ions, contact time, and adsorbent dosage were checked and optimized. The outcome of our findings revealed that the removal of Cr(VI) ions by CMC/PANI nanocomposite IPN strongly depends on solution pH. The removal information was matched with the Langmuir adsorption isotherm model and the utmost monolayer adsorption capacity at pH 2 was 136.98 mg/g at 25 °C. The pseudo-second-order kinetics were operated and the thermodynamic parameters suggested spontaneous and exothermic nature of the adsorption process. Consequences indicated that CMC/PANI nanocomposite IPN could be an affective eco/environmentally friendly adsorbent for the removal of Cr(VI) ions from aqueous solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.