Abstract
Iron losses in permanent-magnet synchronous machines form a larger portion of the total losses than in induction machines and, hence, more importance should be given to the iron losses. Previously, models have been presented for the calculations of these losses, but these models still rely on finite-element simulations to obtain correction factors, which are substantial, to apply to the theoretically derived formulas in order to obtain good agreement with the experimental data. This paper points out the source of this correction factor: the neglect of the excess eddy-current loss component. In many cases, this loss component dominates the total iron losses and needs to be incorporated in the theoretical considerations. The paper also provides a more complete model of iron loss, which greatly reduces the need for calculating the correction factors using the finite-element method (FEM). This more complete model reduces design time, especially when a number of candidate designs need to be analyzed. Otherwise, the calculation of the correction factors using FEM would be cumbersome, as the correction factors tend to be nonlinear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.