Abstract
Chocolate Pots Hot Springs in Yellowstone National Park is a hydrothermal system that contains high aqueous ferrous iron [∼0.1 mM Fe(II)] at circumneutral pH conditions. This site provides an ideal field environment in which to test our understanding of Fe isotope fractionations derived from laboratory experiments. The Fe(III) oxides, mainly produced through Fe(II) oxidation by oxygen in the atmosphere, have high ⁵⁶Fe/⁵⁴Fe ratios compared with the aqueous Fe(II). However, the degree of fractionation is less than that expected in a closed system at isotopic equilibrium. We suggest two explanations for the observed Fe isotope compositions. One is that light Fe isotopes partition into a sorbed component and precipitate out on the Fe(III) oxide surfaces in the presence of silica. The other explanation is internal regeneration of isotopically heavy Fe(II) via dissimilatory Fe(III) reduction farther down the flow path as well as deeper within the mat materials. These findings provide evidence that silica plays an important role in governing Fe isotope fractionation factors between reduced and oxidized Fe. Under conditions of low ambient oxygen, such as may be found on early Earth or Mars, significantly larger Fe isotope variations are predicted, reflecting the more likely attainment of Fe isotope equilibrium associated with slower oxidation rates under low-O₂ conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have