Abstract

Predicting the long-term potential of permeable reactive barriers for treating contaminated groundwater relies on understanding the endpoints of biogeochemical reactions between influent groundwater and the reactive medium. Iron hydroxy carbonate (chukanovite) is frequently observed as a secondary mineral precipitate in granular iron PRBs. Mineralogical characterization was carried out using X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and X-ray absorption spectroscopy on materials collected from three field-based PRBs in the US (East Helena, MT; Elizabeth City, NC; Denver Federal Center, CO). These PRBs were installed to treat a range of contaminants, including chlorinated organics, hexavalent chromium, and arsenic. Results obtained indicate that chukanovite is a prevalent secondary precipitate in the PRBs. Laboratory experiments on high-purity chukanovite separates were carried out to constrain the room-temperature solubility for this mineral. An estimated Gibbs energy of formation (Δ f G°) for chukanovite is − 1174.4 ± 6 kJ/mol. A mineral stability diagram is consistent with observations from the field. Water chemistry from the three reactive barriers falls inside the predicted stability field for chukanovite, at inorganic carbon concentrations intermediate to the stability fields of siderite and ferrous hydroxide. These new data will aid in developing better predictive models of mineral accumulation in zerovalent iron PRBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.