Abstract

Nanozymes with multiple functionalities endow biochemical sensing with more sensitive and efficient analytical performance by widening the sensing modes. Meanwhile, the target-oriented design of multifunctional nanozymes for certain biosensing remains challenging. Herein, a constructive strategy of doping iron into polymer dots (PDs) to achieve nanozymes with excellent oxidase-mimicking and peroxidase-mimicking activity is proposed. Compared with the Fe-free PDs prepared under the same mild condition, the Fe-doped PDs (Fe-PDs) exhibit greatly boosted fluorescence at 500 nm. While applying 3,3',5,5'-tetramethylbenzidine (TMB) as a chromogenic substrate, the fluorescence of the Fe-PDs can be further quenched by oxTMB due to the inner filter effect (IFE). Inspired by this, a simple but efficient colorimetric and fluorometric dual-mode sensing platform is developed for monitoring the reducing substances ascorbic acid (AA), α-glucosidase (α-Glu), and its inhibitors (AGIs). We believe that such multifunctional enzyme-mimic materials will provoke the exploration of multimode sensing strategy with strong practicality to serve as a versatile tool in biochemical sensing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call