Abstract

Ascorbate oxidase (AAO) and ascorbic acid (AA) play an important role in delaying lives senescence and metabolism. In this study, a sensitive ratiometric fluorescence sensing system based on the inner filter effect (IFE) between persistent luminescent particles (PLPs) and 2, 3-diaminophenazine (DAP), was designed for the detection of AA and AAO activity. Wherein, PLPs emit blue fluorescence at 475 nm with an excitation wavelength of 370 nm. CoOOH nanosheets with oxidase-like activity can oxidize o-phenylenediamine (OPD) to produce 2, 3-diaminophenazine (DAP) with orange fluorescence at 558 nm. The generated DAP quenched the fluorescence of PLPs by an inner filter effect (IFE). When AA was introduced to the system, CoOOH nanosheets were destroyed and reduced to Co2+, thereby inhibiting the oxidization of OPD and effectively preserving the blue fluorescence of PLPs at 475 nm. Besides, AAO can catalyse AA to produce the oxided dehydroascorbic acid (DHA). The dissipative AA can recover orange fluorescence of DAP with weakening the blue fluorescence of PLPs. Therefore, a sensitive ratio fluorescence sensing strategy was established by using PLPs as the reference signal and DAP as a reported signal for the detection of AA and AAO activity. Under optimal conditions, the obtained linear ranges were 1–45 μM and 1–20 mU/mL, and detection limits were 0.2 μM and 0.25 mU/mL, respectively. Finally, this proposed ratiometric fluorescent analytical strategy was used to detect AA in real samples (lemon, orange, tomato), which exhibited satisfactory results comparing with commercial kit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call