Abstract

In the diatom Phaeodactylum tricornutum, iron limitation promotes a decrease in the content of photosystem II, as determined by measurements of oxygen-evolving activity, thermoluminescence, chlorophyll fluorescence analyses and protein quantification methods. Thermoluminescence experiments also indicate that iron limitation induces subtle changes in the energetics of the recombination reaction between reduced QB and the S2/S3 states of the water-splitting machinery. However, electron transfer from QA to QB, involving non-heme iron, seems not to be significantly inhibited. Moreover, iron deficiency promotes a severe decrease in the content of the extrinsic PsbV/cytochrome c550 subunit of photosystem II, which appears in eukaryotic algae from the red photosynthetic lineage (including diatoms) but is absent in green algae and plants. The decline in the content of cytochrome c550 under iron-limiting conditions is accompanied by a decrease in the binding of this protein to photosystem II, and also of the extrinsic PsbO subunit. We propose that the lack of cytochrome c550, induced by iron deficiency, specifically affects the binding of other extrinsic subunits of photosystem II, as previously described in cyanobacterial PsbV mutants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.