Abstract

Rice plants are highly susceptible to Fe-deficiency. Under nutrient deprivation, plant cells undergo extensive metabolic changes for their continued survival. To provide further insight into the pathways induced during Fe-deficiency, rice seedlings were grown for 3, 6 and 9 days in the presence or absence of Fe. Using RDA (Representational Difference Analysis), sequences of 32 induced genes in rice shoots under Fe-deficiency were identified. About 30% of the sequences found have been previously reported as responsive to other abiotic and even biotic stresses. However, this is the first report that indicates their relation to Fe deprivation. Differential expression of selected genes was confirmed by semi-quantitative RT-PCR analysis. The identification of classical senescence-related sequences, such as lipase EC 3.1.1.-, ubiquitin-conjugating enzyme EC 6.3.2.19, beta-Glucosidase EC 3.2.1.21 and cysteine synthase EC 2.5.1.47, besides the higher accumulation of total soluble sugars prior to the decrease of total chlorophyll content in Fe-deficient leaves, indicate that sugar accumulation may be one of the factors leading to premature leaf senescence induced by Fe-deficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.