Abstract

Two new premyrsinane-type diterpenes (2 and 3) as diastereomers were synthesized from lathyrane-type diterpene euphorbia factor L3 (1) for the first time via an efficient Fe(acac)3-catalyzed skeleton conversion process. This conversion features a biogenetically inspired strategy that relies on a concise reductive olefin coupling involving intramolecular Michael addition with free radicals. The structures of 2 and 3 were elucidated by a combination of the interpretation of their spectroscopic data and single-crystal X-ray diffraction analysis. The premyrsinane diterpenes 2 and 3 exhibited cytotoxic activity against the 4T1 breast cancer cell line, while the parent compound euphorbia factor L3 (1) was inactive. The current results not only confirmed the biogenetic relationship between lathyranes and premyrsinanes for the first time but also suggested a novel method for the preparation of naturally rare premyrsinane diterpenes with high bioactivity from the more abundant natural lathyrane diterpenes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.