Abstract
A high-temperature process of refining metallurgical-grade silicon to solar-grade silicon was developed. In this gas purging treatment, boron impurity in silicon reacts with ammonia and the products are removed as volatiles at high temperature. 1 mass pct metallic iron was added to molten silicon as a catalyst, improving the boron removal ratio from 14 to 80 pct at 1723 K (1450 °C). At 1823 K (1550 °C), this reaction could reduce boron concentration from more than 120 ppmw to <1 ppmw within 6 hours, meeting the purity requirement of solar-grade silicon. Nickel was tested in place of iron but showed no catalytic effect on boron removal. The result confirmed the catalytic role of iron in boron removal from molten silicon in ammonia. Possible mechanisms of catalysis, influence from iron concentration, and temperature effect on the catalytic reaction were explored. An apparent activation energy of 329 ± 129 kJ mol−1 was calculated from experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.