Abstract

Background and aimsVascular calcification (VC) is an intricate active process, significantly controlled by vascular smooth muscle cells (VSMCs). Mitochondrial dysfunction plays a pivotal role in VC and VSMCs osteoblastic transformation. We previously reported that decreased levels of Irisin were independently associated with VC in hemodialysis patients. The present study aimed to investigate the role of Irisin in VC, especially in VSMCs osteoblastic transformation and mitochondrial function. MethodsIn vitro, VSMCs calcification was induced by β‐glycerophosphate, while in vivo VC was triggered by adenine and high phosphorus diet. Alizarin red, Von Kossa staining, and calcium and Alp activity were performed to test VC. Western blot and immunohistochemical staining were employed to analyze the expression of proteins associated with VSMCs osteoblastic transformation and AMPK signaling. Mitochondrial membrane potential (MMP) and structures were observed by immunofluorescence staining. ResultsIrisin alleviated VSMCs calcification induced by β‐glycerophosphate. Mechanistically, Irisin activated AMPK and downregulated the expression of Drp1, further alleviating mitochondria fission and VSMCs osteoblastic transformation. In vivo, Irisin decreased serum creatinine, urea and phosphorous levels in chronic kidney disease (CKD) mice. Importantly, Irisin treatment postponed CKD-associated VC with the upregulation of α-Sma and p-AMPK expression, and the downregulation of Runx2 and Drp1 expression. ConclusionsOur results firstly reveal that Irisin inhibits CKD-associated VC. Irisin suppresses VSMCs osteoblastic transformation and mitochondria dysfunction via AMPK/Drp1 signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call