Abstract

Background and aimsEndothelial-to-mesenchymal transition (EndMT) is an important reason for restenosis but the underlying mechanisms need to be further explored. Therefore, the purpose of this study is to screen significantly different microRNAs (miRNAs) and assess their functions and downstream pathways. MethodsThis study screened several miRNAs with significant differences between human arterial segments from restenosis patients and healthy volunteers using whole transcriptome resequencing and real-time quantitative reverse transcription PCR (qRT-PCR). We explored the correlation between miR-1290 and EndMT using Western blot, qRT-PCR, Pearson correlation analysis and further functional gain and loss experiments. Subsequently, we identified the direct downstream target of miR-1290 by bioinformatics analysis, RNA pull-down, double Luciferase reporter gene and other functional experiments. Finally, rat carotid artery balloon injury model demonstrated the therapeutic potential of miR-1290 regulator. ResultsWe screened 129 differentially expressed miRNAs. Among them, miR-1290 levels were significantly higher in restenosis arteries than in healthy arteries, and as expected, EndMT was functionally enhanced with miR-1290 overexpression and comparatively weakened when miR-1290 was knocked down. In addition, fibroblast growth factor-2 (FGF2) was established as the downstream target of miR-1290. Finally, we utilized an animal model and found that low miR-1290 levels could alleviate EndMT and the progression of restenosis. ConclusionsOur study demonstrated the strong regulatory effects of miR-1290 on EndMT, endometrial hyperplasia and restenosis, which could be useful as biomarker and therapeutic target for stent implantation in patients with arterial occlusive disease of the lower extremities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.