Abstract

Iris recognition is one of the best methods in the biometric field. It includes two main processes: “Iris localization and segmentation” and “Feature extraction and coding”. We have introduced a new method based on Gabor transform for localization and segmentation of iris in eye image and also have used it to implement an Iris Recognition system. By applying the Gabor transform to an eye image, some constant templates are extracted related to the borders of pupil and iris. These features are robust and almost easy to use. There is no restriction and no tuning parameter in algorithm. The algorithm is extremely robust to the eyelids and eyelashes occlusions. To evaluate the segmentation method, we have also developed a gradient based method. The results of experimentations show that our proposed algorithm works better than the gradient based algorithm. The results of our recognition system are also noticeable. The low FRR and FAR values justify the results of segmentation method. We have also applied different Gabor Wavelet filters for feature extraction. The observations show that the threshold used to discriminate feature vectors is highly dependant on the orientation, scale and parameters of the corresponding Gabor Wavelet Transform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.