Abstract

Iris recognition technology identifies an individual from its iris texture with great precision. A typical iris recognition system comprises eye image acquisition, iris segmentation, feature extraction, and matching. However, the system precision greatly depends on accurate iris localization in the segmentation module. In this paper, we propose a reliable iris localization algorithm. First, we locate a coarse eye location in an eye image using integral projection function (IPF). Next, we localize the pupillary boundary in a sub image using a reliable technique based on the histogram-bisection, image statistics, eccentricity, and object geometry. After that, we localize the limbic boundary using a robust scheme based on the radial gradients and an error distance transform. Finally, we regularize the actual iris boundaries using active contours. The proposed algorithm is tested on public iris databases: MMU V1.0, CASIA-IrisV1, and the CASIA-IrisV3-Lamp. Experimental results demonstrate superiority of the proposed algorithm over some of the contemporary techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.