Abstract

This study aimed to investigate the effect of endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme 1α (IRE1α) on the sonic hedgehog N-terminus (N-Shh)-enhanced-osteogenic differentiation process in mouse embryonic fibroblasts (MEFs). Osteogenesis of MEFs was observed by alkaline phosphatase (ALP) staining, alizarin red staining, and Von Kossa staining assays. Activation of unfolded protein response and Shh signaling were examined using real-time quantitative PCR and western blot assays. IRE1α-deficient MEFs were used to explore the effect of IRE1α on N-Shh-driven osteogenesis. N-Shh increased ALP activity, matrix mineralization, and the expression of Alp and Col-I in MEFs under osteogenic conditions; notably, this was reversed when combined with the ER stress activator Tm treatment. Interestingly, the administration of N-Shh decreased the expression of IRE1α. Abrogation of IRE1α increased the expression of Shh pathway factors in osteogenesis-induced MEFs, contributing to the osteogenic effect of N-Shh. Moreover, IRE1α-deficient MEFs exhibited elevated levels of osteogenic markers. Our findings suggest that the IRE1α-mediated unfolded protein response may alleviate the ossification of MEFs by attenuating Shh signaling. Our research has identified a strategy to inhibit excessive ossification, which may have clinical significance in preventing temporomandibular joint bony ankylosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.