Abstract
Over the last decade, the vertex-centric programming model has attracted significant attention in the world of graph processing, resulting in the emergence of a number of vertex-centric frameworks. Its simple programming interface, where computation is expressed from a vertex point of view, offers both ease of programming to the user and inherent parallelism for the underlying framework to leverage. However, vertex-centric programs represent an extreme form of irregularity, both inter and intra core. This is because they exhibit a variety of challenges from a workload that may greatly vary across supersteps, through fine-grain synchronisations, to memory accesses that are unpredictable both in terms of quantity and location. In this paper, we explore three optimisations which address these irregular challenges; a hybrid combiner carefully coupling lock-free and lock-based combinations, the partial externalisation of vertex structures to improve locality and the shift to an edge-centric representation of the workload. The optimisations were integrated into the iPregel vertex-centric framework, enabling the evaluation of each optimisation in the context of graph processing across three general purpose benchmarks common in the vertex-centric community, each run on four publicly available graphs covering all orders of magnitude from a million to a billion edges. The result of this work is a set of techniques which we believe not only provide a significant performance improvement in vertex-centric graph processing, but are also applicable more generally to irregular applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.